Homotopy equivalences induced by balanced pairs
نویسنده
چکیده
Article history: Received 9 April 2009 Available online 17 September 2010 Communicated by Luchezar L. Avramov Dedicated to Professor Claus Michael Ringel on the occasion of his sixty-fifth birthday MSC: 18G25 18E30 16E65
منابع مشابه
Reducibility of Self-homotopy Equivalences
We describe a new general method for the computation of the group Aut(X) of self-homotopy equivalences of a space. It is based on the decomposition of Aut(X) induced by a factorization of X into a product of simpler spaces. Normally, such decompositions require assumptions (’induced equivalence property’, ’diagonalizability’), which are strongly restrictive and hard to check. In this paper we d...
متن کاملComparing Globular Cw-complex and Flow
A functor is constructed from the category of globular CW-complexes to that of flows. It allows to compare the S-homotopy equivalences (resp. the T-homotopy equivalences) of globular complexes with the S-homotopy equivalences (resp. the T-homotopy equivalences) of flows. Moreover, one proves that this functor induces an equivalence of categories from the localization of the category of globular...
متن کاملComparing globular complex and flow
A functor is constructed from the category of globular CW-complexes to that of flows. It allows the comparison of the S-homotopy equivalences (resp. the T-homotopy equivalences) of globular complexes with the S-homotopy equivalences (resp. the T-homotopy equivalences) of flows. Moreover, it is proved that this functor induces an equivalence of categories from the localization of the category of...
متن کاملOn Strong Homotopy for Quasi-schemoids
A quasi-schemoid is a small category with a particular partition of the set of morphisms. We define a homotopy relation on the category of quasi-schemoids and study its fundamental properties. The homotopy set of self-homotopy equivalences on a quasi-schemoid is used as a homotopy invariant in the study. The main theorem enables us to deduce that the homotopy invariant for the quasi-schemoid in...
متن کاملHomotopy theory and classifying spaces
What is a homotopy theory T? – Examples of homotopy theories (Tpair presentation) – The homotopy category Ho(T) – Examples of homotopy categories – Model category: (C, E) with extras – Examples of model categories (C, E) – Dividends from a model category structure on (C, E) – Equivalences between homotopy theories – T(C, E) ∼ T(C′, E ′) for model categories – Examples of equivalences between ho...
متن کامل